Now, we can try to make sense of some shapefiles and get them into a format where we can apply our algorithm. First, let's install a library that allows us to work easily with shapefiles! I chose pyshp
.
!pip install pyshp
import shapefile
import geopandas as gpd
import os
Now we can load in our shapefile and set up our reader.
myshp = open("C:\\Users\\Mark\\Desktop\\coastline-capstone\\LA_shorelines.shp", "rb")
mydbf = open("C:\\Users\\Mark\\Desktop\\coastline-capstone\\LA_shorelines.dbf", "rb")
r = shapefile.Reader(shp=myshp, dbf=mydbf)
shapes = r.shapes()
Just to get a sense of what this shapefile looks like, we can plot each shape.
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1,figsize=(5,5))
x_curves = []
y_curves = []
for shape in r.shapeRecords():
x = [i[0] for i in shape.shape.points[:]]
x_curves.append(x[0])
x_curves.append(x[1])
y = [i[1] for i in shape.shape.points[:]]
y_curves.append(y[0])
y_curves.append(y[1])
ax.plot(x,y, 'k', linewidth='0.5')
x_offset = min(x_curves)
y_offset = min(y_curves)
Now, we can do some transformations on the coordinates to make them more usable for our purposes. Since the coordinates have a lot of decimals and our 2D array approach requires integer coordinates, we can multiply each coordinate by some amount and round off the excess.
shape_coords = []
for shape in shapes:
shape_coords.append(shape.bbox)
rounded_coords = []
for bbox in shape_coords:
bbox = list(map(lambda x: round(x*1000), bbox))
rounded_coords.append(bbox)
Each shape is given as a boundary box - to simplify this, we can individually average the x values and the y values of each boundary box. Now that we have our integer coordinates, we can start creating our 2D array from this shapefile. First, let's store the x and y values separately - it will be useful!
avg_x_coords = []
avg_y_coords = []
avg_coords = []
for point in rounded_coords:
x = (point[0]+point[2])//2
y = (point[1]+point[3])//2
avg_x_coords.append(x)
avg_y_coords.append(y)
avg_coords.append([x,y])
We can now easily discern the necessary dimensions for our 2D array.
x_range = max(avg_x_coords) - min(avg_x_coords)
y_range = max(avg_y_coords) - min(avg_y_coords)
Making the array itself...
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
Next, we can subtract from each coordinate to equalize the bottom-right corner of our plot at the origin.
for point in avg_coords:
point[0] -= min(avg_x_coords)
point[1] -= min(avg_y_coords)
Finally, we can populate our 2D array with land data.
for point in avg_coords:
coast[point[0]][point[1]] = 1
Below are constants used to transform the plot to the same proportions as our coastline plot.
xq = max(x_curves)-x_offset
yq = max(y_curves)-y_offset
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
for point in avg_coords:
coast[point[0]][point[1]] = 1
Now let's plant some trees! We can introduce our functions from the erosion_model
notebook. (Giant cell, but nothing new.)
import numpy as np
def timestep(coast):
for row_idx in range(len(coast)): # loops to check every element
for col_idx in range(len(coast[row_idx])): # in the 2d array.
if coast[row_idx][col_idx] > 0: # if there is land, begin the coast checks
# the coast checks are partitioned in this way to prevent index errors!
# the top row checks only the left and right points
if row_idx != 0:
if coast[row_idx-1][col_idx] <= 0:
if treemap[row_idx-1][col_idx]:
coast[row_idx][col_idx] -= 0.01
else:
coast[row_idx][col_idx] -= 0.16
# the leftmost column checks only the right and front points
if col_idx != 0:
if coast[row_idx][col_idx-1] <= 0:
if treemap[row_idx][col_idx-1]:
coast[row_idx][col_idx] -= 0.01
else:
coast[row_idx][col_idx] -= 0.06
# the rightmost column checks only the left and front points
if col_idx != len(coast[0])-1:
if coast[row_idx][col_idx+1] <= 0:
if treemap[row_idx][col_idx+1]:
coast[row_idx][col_idx] -= 0.01
else:
coast[row_idx][col_idx] -= 0.06
if coast[row_idx][col_idx] < 0: # fixes over-subtraction
coast[row_idx][col_idx] = 0
def graphical_timestep(coast):
timestep(coast)
for row in range(len(coast)):
for col in range(len(coast[0])):
if coast[row][col] > 0:
points[(row,col)].set_radius(5*coast[row][col]*0.8)
treemap = np.zeros((len(coast), len(coast[0])), dtype=bool)
def num_faces(coast, row, col):
faces = 0
if coast[row][col] == 0:
if row-1 >= 0:
if coast[row-1][col] > 0:
faces += 1
if row+1 <= len(coast)-1:
if coast[row+1][col] > 0:
faces += 1
if col-1 >= 0:
if coast[row][col-1] > 0:
faces += 1
if col+1 <= len(coast[0])-1:
if coast[row][col+1] > 0:
faces += 1
return faces
def place_trees(coast, treemap, n):
trees_to_place = n
# first, check for four open faces (only possible with a mini lake, but still)
for row_idx in range(len(coast)): # loops to check every element
for col_idx in range(len(coast[row_idx])): # in the 2d array.
if num_faces(coast,row_idx,col_idx) == 4:
treemap[row_idx][col_idx] = True
trees_to_place -= 1
# also, we need to ensure we don't overplant.
# check if we have any trees left after every planting -
# if not, break immediately.
if trees_to_place == 0:
return
# next, check for three open faces.
for row_idx in range(len(coast)): # loops to check every element
for col_idx in range(len(coast[row_idx])): # in the 2d array.
if num_faces(coast,row_idx,col_idx) == 3:
treemap[row_idx][col_idx] = True
trees_to_place -= 1
if trees_to_place == 0:
return
# now two open faces...
for row_idx in range(len(coast)): # loops to check every element
for col_idx in range(len(coast[row_idx])): # in the 2d array.
if num_faces(coast,row_idx,col_idx) == 2:
treemap[row_idx][col_idx] = True
trees_to_place -= 1
if trees_to_place == 0:
return
# and one open face.
for row_idx in range(len(coast)): # loops to check every element
for col_idx in range(len(coast[row_idx])): # in the 2d array.
if num_faces(coast,row_idx,col_idx) == 1:
treemap[row_idx][col_idx] = True
trees_to_place -= 1
if trees_to_place == 0:
return
Let's start with 200 trees.
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.patches as mpatches
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
for point in avg_coords:
coast[point[0]][point[1]] = 1
treemap = np.zeros((len(coast), len(coast[0])), dtype=bool)
place_trees(coast,treemap,200)
fig, ax = plt.subplots(1,figsize=(10,10))
points = {}
ax.set_facecolor('lightcyan')
for row in range(len(coast)):
for col in range(len(coast[0])):
if coast[row][col] == 1:
p = mpatches.Circle((row, col), coast[row][col]*5, color="tan") # key = coords, val = patch object
points[(row,col)] = p
ax.add_patch(p)
for shape in r.shapeRecords():
x = [(i[0]-x_offset)*(x_range/xq) for i in shape.shape.points[:]]
y = [(i[1]-y_offset)*(y_range/yq) for i in shape.shape.points[:]]
ax.plot(x,y, 'k', linewidth='0.35', alpha=0.3)
for row in range(len(coast)):
for col in range(len(coast[0])):
if treemap[row][col]:
t = mpatches.Circle((row, col), 2.5, color="lime")
ax.add_patch(t)
plt.title('Algorithmic Placement of Trees in Southern Louisiana', fontsize="20")
plt.xlim([-20,x_range])
plt.ylim([-20,y_range])
The algorithm seems to work quite nicely!
We can add a function to quickly perform multiple timesteps in order to streamline area comparisons.
def multi_step(coast, area_array, n):
for _ in range(n):
timestep(coast)
area_array.append(np.sum(coast))
Just to see what sort of difference this placement makes, we can run a treeless simulation. Resetting the coast and tree arrays to their initial states:
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
for point in avg_coords:
coast[point[0]][point[1]] = 1
treemap = np.zeros((len(coast), len(coast[0])), dtype=bool)
Now, we can take a few timesteps in each simulation and tally the area as it decreases.
notree_area = [np.sum(coast)]
area_prog = [np.sum(coast)]
multi_step(coast, notree_area, 5)
notree_area
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
for point in avg_coords:
coast[point[0]][point[1]] = 1
place_trees(coast,treemap,200)
multi_step(coast,area_prog,5)
area_prog
plt.figure()
plt.plot(area_prog)
plt.plot(notree_area)
plt.title("Area Retention With and Without Tree Placement", fontsize=15)
plt.ylabel("Area (sq. units)")
plt.xlabel("Timestep number")
This process will produce a simulation for any compatible shapefile. Below are a few others in areas of Louisiana such as Houma and the greater Grand Isle area. (This gigantic cell simply reruns the setup functions)
newshp = open("C:\\Users\\Mark\\Desktop\\coastline-capstone\\Houma Shapefile\\HoumaShapfile.shp", "rb")
newdbf = open("C:\\Users\\Mark\\Desktop\\coastline-capstone\\Houma Shapefile\\HoumaShapfile.dbf", "rb")
r = shapefile.Reader(shp=newshp, dbf=newdbf)
shapes = r.shapes()
x_curves = []
y_curves = []
for shape in r.shapeRecords():
x = [i[0] for i in shape.shape.points[:]]
x_curves.append(x[0])
x_curves.append(x[1])
y = [i[1] for i in shape.shape.points[:]]
y_curves.append(y[0])
y_curves.append(y[1])
x_offset = min(x_curves)
y_offset = min(y_curves)
shape_coords = []
for shape in shapes:
shape_coords.append(shape.bbox)
rounded_coords = []
for bbox in shape_coords:
bbox = list(map(lambda x: round(x*1000), bbox))
rounded_coords.append(bbox)
avg_x_coords = []
avg_y_coords = []
avg_coords = []
for point in rounded_coords:
x = (point[0]+point[2])//2
y = (point[1]+point[3])//2
avg_x_coords.append(x)
avg_y_coords.append(y)
avg_coords.append([x,y])
x_range = max(avg_x_coords) - min(avg_x_coords)
y_range = max(avg_y_coords) - min(avg_y_coords)
for point in avg_coords:
point[0] -= min(avg_x_coords)
point[1] -= min(avg_y_coords)
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
for point in avg_coords:
coast[point[0]][point[1]] = 1
xq = max(x_curves)-x_offset
yq = max(y_curves)-y_offset
treemap = np.zeros((len(coast), len(coast[0])), dtype=bool)
place_trees(coast,treemap,1000)
fig, ax = plt.subplots(1,figsize=(10,10))
points = {}
ax.set_facecolor('lightcyan')
for row in range(len(coast)):
for col in range(len(coast[0])):
if coast[row][col] == 1:
p = mpatches.Circle((row, col), coast[row][col]*5, color="tan") # key = coords, val = patch object
points[(row,col)] = p
ax.add_patch(p)
for shape in r.shapeRecords():
x = [(i[0]-x_offset)*(x_range/xq) for i in shape.shape.points[:]]
y = [(i[1]-y_offset)*(y_range/yq) for i in shape.shape.points[:]]
ax.plot(x,y, 'k', linewidth='0.35', alpha=0.3)
for row in range(len(coast)):
for col in range(len(coast[0])):
if treemap[row][col]:
t = mpatches.Circle((row, col), 2.5, color="lime")
ax.add_patch(t)
plt.title('Algorithmic Placement of 1000 Trees in Houma, LA', fontsize='23')
plt.xlim([-20,x_range])
plt.ylim([-20,y_range])
newshp = open("C:\\Users\\Mark\\Desktop\\coastline-capstone\\SouthernLouisiana(GrandIsle)FilteredShapfile.shp", "rb")
newdbf = open("C:\\Users\\Mark\\Desktop\\coastline-capstone\\SouthernLouisiana(GrandIsle)FilteredShapfile.dbf", "rb")
r = shapefile.Reader(shp=newshp, dbf=newdbf)
shapes = r.shapes()
x_curves = []
y_curves = []
for shape in r.shapeRecords():
x = [i[0] for i in shape.shape.points[:]]
x_curves.append(x[0])
x_curves.append(x[1])
y = [i[1] for i in shape.shape.points[:]]
y_curves.append(y[0])
y_curves.append(y[1])
x_offset = min(x_curves)
y_offset = min(y_curves)
shape_coords = []
for shape in shapes:
shape_coords.append(shape.bbox)
rounded_coords = []
for bbox in shape_coords:
bbox = list(map(lambda x: round(x*1000), bbox))
rounded_coords.append(bbox)
avg_x_coords = []
avg_y_coords = []
avg_coords = []
for point in rounded_coords:
x = (point[0]+point[2])//2
y = (point[1]+point[3])//2
avg_x_coords.append(x)
avg_y_coords.append(y)
avg_coords.append([x,y])
x_range = max(avg_x_coords) - min(avg_x_coords)
y_range = max(avg_y_coords) - min(avg_y_coords)
for point in avg_coords:
point[0] -= min(avg_x_coords)
point[1] -= min(avg_y_coords)
coast = [[0 for i in range(y_range+1)] for j in range(x_range+1)]
for point in avg_coords:
coast[point[0]][point[1]] = 1
xq = max(x_curves)-x_offset
yq = max(y_curves)-y_offset
treemap = np.zeros((len(coast), len(coast[0])), dtype=bool)
place_trees(coast,treemap,1000)
fig, ax = plt.subplots(1,figsize=(10,10))
points = {}
ax.set_facecolor('lightcyan')
for row in range(len(coast)):
for col in range(len(coast[0])):
if coast[row][col] == 1:
p = mpatches.Circle((row, col), coast[row][col]*5, color="tan") # key = coords, val = patch object
points[(row,col)] = p
ax.add_patch(p)
for shape in r.shapeRecords():
x = [(i[0]-x_offset)*(x_range/xq) for i in shape.shape.points[:]]
y = [(i[1]-y_offset)*(y_range/yq) for i in shape.shape.points[:]]
ax.plot(x,y, 'k', linewidth='0.35', alpha=0.3)
for row in range(len(coast)):
for col in range(len(coast[0])):
if treemap[row][col]:
t = mpatches.Circle((row, col), 2.5, color="lime")
ax.add_patch(t)
plt.title('Algorithmic Placement of 1000 Trees in Greater Grand Isle', fontsize=23)
plt.xlim([-20,x_range])
plt.ylim([-20,y_range])
import numpy as np
import nbinteract as nbi
nbi.publish('danellsworth/git/Coastal Erosion Website', 'updated_shapefile_algo.ipynb')